26 research outputs found

    Lunar Polar Illumination for Power Analysis

    Get PDF
    This paper presents illumination analyses using the latest Earth-based radar digital elevation model (DEM) of the lunar south pole and an independently developed analytical tool. These results enable the optimum sizing of solar/energy storage lunar surface power systems since they quantify the timing and durations of illuminated and shadowed periods. Filtering and manual editing of the DEM based on comparisons with independent imagery were performed and a reduced resolution version of the DEM was produced to reduce the analysis time. A comparison of the DEM with lunar limb imagery was performed in order to validate the absolute heights over the polar latitude range, the accuracy of which affects the impact of long range, shadow-casting terrain. Average illumination and energy storage duration maps of the south pole region are provided for the worst and best case lunar day using the reduced resolution DEM. Average illumination fractions and energy storage durations are presented for candidate low energy storage duration south pole sites. The best site identified using the reduced resolution DEM required a 62 hr energy storage duration using a fast recharge power system. Solar and horizon terrain elevations as well as illumination fraction profiles are presented for the best identified site and the data for both the reduced resolution and high resolution DEMs compared. High resolution maps for three low energy storage duration areas are presented showing energy storage duration for the worst case lunar day, surface height, and maximum absolute surface slope

    Lunar South Pole Illumination: Review, Reassessment, and Power System Implications

    Get PDF
    This paper reviews past analyses and research related to lunar south pole illumination and presents results of independent illumination analyses using an analytical tool and a radar digital elevation model. The analysis tool enables assessment at most locations near the lunar poles for any time and any year. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for various highly illuminated sites which have been identified for manned or unmanned operations. The format of the data can be used by power system designers to develop mass optimized solar and energy storage systems. Data are presented for the worse case lunar day (a critical power planning bottleneck) as well as three lunar days during lunar south pole winter. The main site under consideration by present lunar mission planners (on the Crater Shackleton rim) is shown to have, for the worse case lunar day, a 0.71 average illumination fraction and 73 to 117 hours required for energy storage (depending on power system type). Linking other sites and including towers at either site are shown to not completely eliminate the need for energy storage

    Radioisotope Reduction Using Solar Power for Outer Planetary Missions

    Get PDF
    Radioisotope power systems have historically been (and still are) the power system of choice from a mass and size perspective for outer planetary missions. High demand for and limited availability of radioisotope fuel has made it necessary to investigate alternatives to this option. Low mass, high efficiency solar power systems have the potential for use at low outer planetary temperatures and illumination levels. This paper documents the impacts of using solar power systems instead of radioisotope power for all or part of the power needs of outer planetary spacecraft and illustrates the potential fuel savings of such an approach

    Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    Get PDF
    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown

    International Space Station Power System Telemetry Compared With Analytically Derived Data for Shadowed Cases

    Get PDF
    This article highlights fiscal year 2002 work performed by NASA Glenn Research Center personnel to validate algorithms and data developed in-house to predict shadowing effects on the International Space Station (ISS) solar arrays power generation. The validation effort utilized video footage and on-orbit telemetry for cases spanning a 1-yr period. Validation was required because of the uncertainty of various aspects involved in shadowing analysis. Results show that a good comparison exists between actual and predicted shadowed power system performance for solar array front and backside shadowing

    Study of Power Options for Jupiter and Outer Planet Missions

    Get PDF
    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets

    Analysis of solar receiver flux distributions for US/Russian solar dynamic system demonstration on the MIR Space Station

    Get PDF
    The United States and Russia have agreed to jointly develop a solar dynamic (SD) system for flight demonstration on the Russian MIR space station starting in late 1997. Two important components of this SD system are the solar concentrator and heat receiver provided by Russia and the U.S., respectively. This paper describes optical analysis of the concentrator and solar flux predictions on target receiver surfaces. The optical analysis is performed using the code CIRCE2. These analyses account for finite sun size with limb darkening, concentrator surface slope and position errors, concentrator petal thermal deformation, gaps between petals, and the shading effect of the receiver support struts. The receiver spatial flux distributions are then combined with concentrator shadowing predictions. Geometric shadowing patterns are traced from the concentrator to the target receiver surfaces. These patterns vary with time depending on the chosen MIR flight attitude and orbital mechanics of the MIR spacecraft. The resulting predictions provide spatial and temporal receiver flux distributions for any specified mission profile. The impact these flux distributions have on receiver design and control of the Brayton engine are discussed

    Characterization of Lunar Polar Illumination from a Power System Perspective

    Get PDF
    This paper presents the results of illumination analyses for the lunar south and north pole regions obtained using an independently developed analytical tool and two types of digital elevation models (DEM). One DEM was based on radar height data from Earth observations of the lunar surface and the other was a combination of the radar data with a separate dataset generated using Clementine spacecraft stereo imagery. The analysis tool enables the assessment of illumination at most locations in the lunar polar regions for any time and any year. Maps are presented for both lunar poles for the worst case winter period (the critical power system design and planning bottleneck) and for the more favorable best case summer period. Average illumination maps are presented to help understand general topographic trends over the regions. Energy storage duration maps are presented to assist in power system design. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for favorable lunar north and south pole sites which have the potential for manned or unmanned spacecraft operations. The format of the data is oriented for use by power system designers to develop mass optimized solar and energy storage systems

    Compilation of Trade Studies for the Constellation Program Extravehicular Activity Spacesuit Power System

    Get PDF
    This compilation of trade studies performed from 2005 to 2006 addressed a number of power system design issues for the Constellation Program Extravehicular Activity Spacesuit. Spacesuits were required for spacewalks and in-space activities as well as lunar and Mars surface operations. The trades documented here considered whether solar power was feasible for spacesuits, whether spacesuit power generation should be a distributed or a centralized function, whether self-powered in-space spacesuits were better than umbilically powered ones, and whether the suit power system should be recharged in place or replaced
    corecore